Sustained preinspiratory cortical potentials during prolonged inspiratory threshold loading in humans.

نویسندگان

  • Lysandre Tremoureux
  • Mathieu Raux
  • Luce Jutand
  • Thomas Similowski
چکیده

Humans can program and control movements, including breathing-related movements. On the electroencephalogram (EEG), this preparation is accompanied by a low-amplitude negativity starting approximately 2.5 s before inspiration that is best known as a Bereitschaftspotential (BP). The presence of BPs has been described during the compensation of mechanical inspiratory loading, thus identifying a cortical involvement in the corresponding ventilatory behavior. The pathophysiological interpretation of this cortical involvement depends on its transient or enduring nature. This study addressed this issue by looking for BPs during sustained inspiratory loading (1 h). Nine healthy male volunteers were studied during unloaded quiet breathing and inspiratory threshold loading (with unloaded expiration). Analyses of EEG signal and ventilatory variables were used to compare beginning and end of sessions. Inspiratory threshold loading caused ventilatory modifications that persisted, unchanged, for an hour. The presence of a BP at the beginning and end of a session was the most frequent occurrence (6 of 9 cases with a 17-cmH2O threshold load; 8 of 9 cases with a 23-cmH2O load). These observations support the hypothesis that the cerebral cortex is involved in the compensation of sustained experimental inspiratory loading. How this translates to respiratory disease involving acute changes in respiratory mechanics remains to be determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Phrenic Motoneuron Recruitment during Sustained Inspiratory Threshold Loading Compared to Single-Breath Loading: A Twitch Interpolation Study

In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI) shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganization and automatisation, but...

متن کامل

Cerebral cortex activation during experimentally induced ventilator fighting in normal humans receiving noninvasive mechanical ventilation.

BACKGROUND Mechanical ventilation is delivered to sedated patients during anesthesia, but also to nonsedated patients (ventilator weaning, noninvasive ventilation). In these circumstances, patient-ventilator asynchrony may occur, provoking discomfort and unduly increasing work of breathing. In certain cases, it is associated with an increased inspiratory load. Inspiratory loading in awake human...

متن کامل

Influence of acute inspiratory loading upon diaphragm motor-evoked potentials in healthy humans.

Acute prior activity of the inspiratory muscles can enhance inspiratory muscle strength and reduce effort perception during subsequent inspiratory efforts. However, the mechanisms subserving these changes are poorly understood. Responses to magnetic stimulation in 10 subjects were studied after an acute bout of nonfatiguing inspiratory muscle loading (IML), corresponding to 40% of subjects' ini...

متن کامل

When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans

Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse ...

متن کامل

Expiratory load compensation is associated with electroencephalographic premotor potentials in humans.

In normal humans during quiet breathing, expiration is mostly driven by elastic recoil of the lungs. Expiration becomes active when ventilation must be increased to meet augmented metabolic demands, or in response to expiratory loading, be it experimental or disease-related. The response to expiratory loading is considered to be mediated by both reflex and cortical mechanisms, but the latter ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 108 5  شماره 

صفحات  -

تاریخ انتشار 2010